577 research outputs found

    Characterization of dynamical regimes and entanglement sudden death in a microcavity quantum - dot system

    Full text link
    The relation between the dynamical regimes (weak and strong coupling) and entanglement for a dissipative quantum - dot microcavity system is studied. In the framework of a phenomenological temperature model an analysis in both, temporal (population dynamics) and frequency domain (photoluminescence) is carried out in order to identify the associated dynamical behavior. The Wigner function and concurrence are employed to quantify the entanglement in each regime. We find that sudden death of entanglement is a typical characteristic of the strong coupling regime.Comment: To appear in Journal of Physics: Condensed Matte

    Photon emission as a source of coherent behaviour of polaritons

    Full text link
    We show that the combined effect of photon emission and Coulomb interactions may drive an exciton-polariton system towards a dynamical coherent state, even without phonon thermalization or any other relaxation mechanism. Exact diagonalization results for a finite system (a multilevel quantum dot interacting with the lowest energy photon mode of a microcavity) are presented in support to this statement

    Learning-associated gamma-band phase-locking of action-outcome selective neurons in orbitofrontal cortex

    Get PDF
    Gamma oscillations (30-100 Hz) correlate to a variety of neural functions, including sensory processing, attention, and action selection. However, they have barely been studied in relation to emotional processing and valuation of sensory signals and actions. We conducted multineuron and local field potential recordings in the orbitofrontal cortex (OFC) of rats performing a task in which they made go or no-go decisions based on two olfactory stimuli predicting appetitive or aversive outcomes. Gamma power was strongest during the late phase of odor sampling, just before go/no-go movement, and increased with behavioral learning. Learning speed was correlated to the slope of the gamma power increment. Spikes of OFC neurons were consistently timed to the gamma rhythm during odor sampling, regardless of the associated outcome. However, only a specific subgroup of cells showed consistent phase timing. These cells showed action-outcome selective activity, not during stimulus sampling but during subsequent movement responses. During sampling, this subgroup displayed a suppression in firing rate but a concurrent increment in the consistency of spike timing relative to gamma oscillations. In addition to gamma rhythm, OFC field potentials were characterized by theta oscillations during odor sampling. Neurons phase-locked to either theta or gamma rhythms but not to both, suggesting that they become associated with separate rhythmic networks involving OFC. Altogether, these results suggest that OFC gamma-band synchronization reflects inhibitory control over a subpopulation of neurons that express information about the emotional valence of actions after a motor decision, which suggests a novel mechanism for response inhibition

    Polariton Lasing in a Multilevel Quantum Dot Strongly Coupled To a Single Photon Mode

    Full text link
    We present an approximate analytic expression for the photoluminescence spectral function of a model polariton system, which describes a quantum dot, with a finite number of fermionic levels, strongly interacting with the lowest photon mode of a pillar microcavity. Energy eigenvalues and wavefunctions of the electron-hole-photon system are obtained by numerically diagonalizing the Hamiltonian. Pumping and photon losses through the cavity mirrors are described with a master equation, which is solved in order to determine the stationary density matrix. The photon first-order correlation function, from which the spectral function is found, is computed with the help of the Quantum Regression Theorem. The spectral function qualitatively describes the polariton lasing regime in the model, corresponding to pumping rates two orders of magnitude lower than those needed for ordinary (photon) lasing. The second-order coherence functions for the photon and the electron-hole subsystems are computed as functions of the pumping rate.Comment: version accepted in Phys. Rev.

    Control of polarization and mode mapping of small volume high Q micropillars

    Get PDF
    We show that the polarization of the emission of a single quantum dot embedded within a microcavity pillar of elliptical cross section can be completely controlled and even switched between two orthogonal linear polarizations by changing the coupling of the dot emission with the polarized photonic modes. We also measure the spatial profle of the emission of a series of pillars with different ellipticities and show that the results can be well described by simple theoretical modeling of the modes of an infinite length elliptical cylinder
    • …
    corecore